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ABSTRACT

Packed spherical particle beds have wide applications throughout

the process industry and are usually analyzed using an appropriate

combination of laminar and turbulent flows with empirically derived

coefficients of which the Ergun (1952) relation is probably the best

known. The 3-D complexity of the void distribution within the beds

has precluded detailed studies of sphere clusters. Numerical modeling

and flow vector visualization for the basic tetra- and hexa-sphere

clusters and two hyper-sphere clusters are presented at two Reynolds

numbers, 400 and 1200. Cutting planes are used to enable visualization

of the complex flows generated within the sphere clusters and are

discussed herein. The boundary conditions and flow fields for the

simple clusters are also compared to the hyper-clusters with larger

variations found for hexa-clusters.

INTRODUCTION

Although flow in packed beds of spheres may be correlated in the

same manner as flows through brush seals and arrays of pins (cylin-

ders) via the simple combination of laminar and turbulent flows with

appropriate coefficients (e.g., Bird et al. (1960), Hendricks et al.

(1996)) yet flow details have not been delineated. The complexity of

any useful bed of spheres includes occlusions, voids, irregular and

different diameter spheres, compaction strains, crushed and cracked

spheres, debris holdup and variations in thermophysical properties. At

this point, these factors will be considered secondary in an attempt to

calculate and visualize the flow in a regular bed. More details on flows

in regular beds of spheres can be found in Athavale et al. (1994a).

Visualization of flows in packed beds of spheres as described herein

is comprised of (1) mathematical modeling and numerical representa-

tion of the flow fields and (2) physical modeling and laser sheet

illumination of flow field particles. Unlike visualization of flows in

pinned arrays and brush seals which are weakly 3-D dependent, flow,

heat and mass transfer in spherical beds are strongly 3-D dependent

and require the combined efforts of numerical and experimental

techniques to embody and characterize models and results.

BASIC SPHERICALCLUSTERS

Hexagonal or cubic densely packed beds have 12 neighbors and a

void fraction of about 0.26, Fig. 1. Two basic spaces can be identified:

Tetra-space.--The unit is formed of four (4) spheres with centers

at the apex of a tetrahedron. Three spheres lie in a plane touching one

another with the centers forming an equilateral triangle. The fourth

sphere is placed in the hollow formed by the three spheres forming a

regular tetrahedron. Thus there are four (4) open curvilinear triangular

faces for flow and four (4) spherical triangular surfaces or boundaries,

Fig. 2(a). Alternately, a half tetra-space unit is the three spheres in a

plane with a sphere placed in the hollow on each side and the plane of

symmetry passing through the centers forming an equilateral triangle.

Hexa-spaee.--The unit is formed from six (6) spheres. Three

spheres lie in one plane touching one another with centers forming a

equilateral triangle and three others lie in a second plane stacked upon

the first plane and rotated 60 ° to fit the hollow of those in the first plane

emulating a six pointed star. An alternate method of constructing this

space is to arrange four spheres in a plane at corners of a square, and

place two spheres in the hollows of the layer one on each side. The

centers of the spheres form a double pyramid. To visualize this, rotate

the hexa-space, figure 1, about the solid horizontal line (upper layer-2),

away from the viewer, until the solid and dashed horizontal line (lower

layer- 1) coincide. In this view the double pyramidal structure becomes

apparant. This space has eight (8) open faces for flow and six (6)

spherical rectangular surfaces or boundaries, Fig. 2(b).

Subdomains of the tetra and hexa Interstitial Spaces

To generate subdomains that can be repeated, a common shared

point(centroid) edges and surfaces are required. The centroid of

interstitial space was taken as this point, with straight lines between the

centroid and the corners of the open faces defining the shared edges

and shapes of the subdomains. These subdomains are either tetrahe-

dral or pyramidal in shape, and are defined either with the open area

or the curved surfaces of the sphere as the basis that is joined to the apex

located at the central point.



Tetrahedral-1.--This subdomain has the triangular curved sphere

surface as the base Fig. 3(a). The base shape is generated in tetra-space.

The corners of the triangle are joined to the apex to form the subdomain

and is needed only for tetra-spaces.

Tetrahedral-2.--This subdomain has the flat, open area shown in

Fig. 3(b) as the base, and the three corners are joined to the central apex

to form the subdomain (Fig. 3(c)). Since the subdomain has the open

cutting plane as the base it is required in both tetra- and hexa-spaces

when forming hyperchisters.

Pyrmnidal.--This subdomain has a quadrilateral portion of the sphere

surface as the base, and the four comers are joined to the apex to form

the subdomain, Fig. 3(d) and required only in the hexa-space.

A compilation of the subdomains and the corresponding surface grids

are shown in Figs. 3(e) to 3(g). The axis convention for grid generation

are iUuslrated in Fig. 4(a) for tetrahedral-1, Fig. 4(b) for tetrahedral-2 and

Fig. 4(c) for pyramidal.

The geometries of the spaces are complex, and a global axis conven-

tion as well as numbering sphere locations was found to be necessary and

convenient in describing the geometry as well as analyzing the flow-

field. This convention is shown in Figs. 5(a) and (b).

The interstitial spaces are created using a group of the subdomain with

the apexes coincident at the space centroid. Tetrahedral domains are used

for all open faces and walls in the tetra-space with pyramidal domains

used for walls in the hexa-space. All apexes coincide at the center of the

interstitial space which implies a polar point. Tetrahedral domains also

have a polar line or centerline. Each tetra-space has 8 domains and each

hexa-space has 14 domains.

The tetra-space has tetrahedral- 1 subdomains on the sphere surfaces

and four tetrahedral-2 subdomains on the four open faces, Fig. 6(a).

The hexa-space had six surrounding spheres, with bases on the sphere

surfaces. Eight cutting planes with eight open area used as bases for the

tetrahedral-2 subdomalns, Fig. 6(b).

The packed bed is generated by populating a region with the tetra- and

hexa-spaces joined at the open faces in each. Care is needed to ensure

that the resulting clusters generate the original sphere surfaces correctly.

Two types of first-level hyperclusters are possible:

ltypereluster.l.--Tetra-space connected to 3 hexa-spaces and one

plane of symmetry with 54 domains, Fig. 7(a).

Hypereluster-2.--Hexa-space connected to 8 tetra-spaces with 78

domains Fig. 7(b).

An algebraic grid generator was used to generate clustered grids in
each of the subdomains which were then assembled to form multiblock

grids for the interstitial spaces and hyperclusters. The tetra-space had

30(i)x 10(j)x 10(k) for each domain (24000 cells), while the hexa-space

had 8x8x8 pyramid domain, 24(i)x8(j)x8(k) tetrahedral domain

(15 360 cells). The clusters had 24x8x8 for the tetrahedral domain and

8x8x8 for the pyramidal domain.

Flow Solver

The numerical simulations were performed using SCISEAL, a

pressure based, finite volume 3-D CFD code with implicit multiblock

capability, Athavale et al. (1994b). The working fluid was nitrogen gas

at pressures of 1.5 MPa. The flow Reynolds numbers were 400 and

1200 and the flow was assumed to be laminar with constant gas

properties. The boundary conditions for the single tetra- and hexa-

spaces are shown in Figs. 6(a) and (b). Similar conditions were also

used for the two hyperclusters.

RESULTS

Tetra-space

Included here are several representative velocity vector plots

for two Reynolds numbers 400 and 1200, taken along selected

cutting planes. Figure 8(a) shows the velocity vectors at x = 1.1 cut-

ting plane, which is a little to the fight of the symmetry plane at x = 1.0,

see Fig. 5(a). The uniform, parallel inlet velocity is seen on the left

edge of both plots in Fig. 8(a). The frontal stagnation zone created by

the incoming flow on sphere 3 is seen on the right side, and the large

recirculation region at the bottom of the figure is created by a

combination of the stagnation on sphere 3 and the symmetry boundary

on the bottom plane of the tetra-space. As expected, this recirculation

zone is somewhat stronger in the high Reynolds number flow. In the

upper portion, the flow splits and moves upwards (in +z direction) and

sideways (+ x-directions) as it exits through the open areas on either

side of sphere 3. There is evidence of separation of the flow on the

upper wall, but the strength of this recirculation zone is nearly the same

for both Reynolds numbers.

The incoming flow generates separation bubbles near the surfaces

of spheres 1 and 2 (due to the surface curvature); to see these zones,

vector plots along the z = 0.18 cutting plane are shown in Fig. 8(b).

The largest contrast between the two Reynolds number flows is seen

in this figure. A double vortex is seen in the plot for the higher

Reynolds number flow, which is nearly absent in the low Reynolds

number case. The effect of this bubble would have a direct impact on

surface temperature distributions for example. The frontal stagnation

zone on the surface of sphere 3 is seen in both the plots.

Vector plots along the y = 0.63 cutting plane are shown in

Fig. 8(c) and part of the separation zones on sphere 1 and 2 are seen.

The incoming flow is out of the plane of the paper. The flow near the

sphere surfaces in both cases turns upwards as it moves toward the exit

boundaries on either side of the plots. The recirculation bubbles for the

higher Reynolds number flows are again seen to be a little stronger.

Hexa-space

The hexa-space flow is more complex due to multiple inlet

boundaries, Fig. 6(b). The velocites at the x = 1.0 cutting plane (a

symmetry plane) are shown in Fig. 9(a). The front stagnation region

on sphere 3 is seen in both plots and a very weak recirculation in the

central portion. A recirculation zone near the open bottom surface is

seen, and is nearly the same for both Reynolds numbers. This

recirculation is also seen to draw fluid in through the bottom face.

Flow near sphere 3 turns upwards as it exits though the open face on

the right. A central vortex is seen on the symmetry boundary in both

cases, and is a result of the upward flow motion on the right side,

which forces the flow to go in the negative z direction under the

surface of sphere 4. The incoming flow on either side of sphere 4

produces a double vortex under this sphere, which is seen in the

z = 1.04 section, Fig. 9(b). The double vortex is somewhat stronger

and smaller in the higher Reynolds number case. This double vortex



forcestheflowinthenegativeyandzdirectionsundersphere4,and
thiswasalsoseeninthepreviousfigure.Atalowersectionz=0.36,
Fig.9(c),theincomingflowgeneratessymmetricvorticesnearthe
surfacesofspheres1and2asinthecaseofthetetra-space,andthe
vorticesarestrongerforthehigherReynoldsnumber.Vectorplotsat
y=0.58cuttingplaneareshowninFig.9(d).Thedoublevortexis
seenundersphere4inbothplots.Theflowisoutoftheplaneofthe
paper.A smallrecirculationisseennearthetopopenfacewhich
indicatessomeinflowaswellassomeoutflowinthisface.The
overallstructureofthefl0w,exceptthecentraldoublevortexisquite
similarforthetwoReynoldsnumbers.

Hypercluster -1

The central cutting plane at x = 1.01 Fig. 10(a) shows the incoming

flow at the left, which now show some variation in the velocity

magnitudes (Reynolds number of 1200), including some evidence of

small recirculations near the x-y plane, where a sphere surface from the

adjoining hexa-space is present. The recirculation bubble in the central,

tetra-space near the bottom edge is weaker and smaller in size as a

result of the inclination of the incoming flow through the plane on the

left. There is also some evidence of recirculation near the top edge, as

the flow exits through the right-side boundary.

The vector plot along, z = 0.18 shown in Fig. 10(b) has some

differences from the single molecule plot Fig. 8(b). Although the

velocity pattern near the spheres 1 and 2 is similar, the hyper-cluster

solution shows an absence of the double vortical structure seen in

Fig. 8(b.2). The y -- 0.63 plane, Fig. 10(c) shows a flow pattern similar

to that for the single tetra-space Fig. 8(c.2). Several recirculation zones

exist in the region attached to the central interstitial space shown in

these figures. The solutions on the single spaces were obtained using

a specified constant pressure on the exit boundaries. The pressure

values on the corresponding interfaces in the central tetra-space were

checked to assess the validity of this assumption. The overall pressure

variation across these faces was found to be sufficiently small to justify

the constant value assumption used in the single space calculations.

Pressure plots were developed but not reported herein.

Hypercluster-2

Six pyramidal subdomalns in the central hexa-space and 72 tetrahe-

dral subdomains for a total of 113664 cells. The velocity vectors

(Reynolds number of 1200) along the plane at x = 1.0 are shown in

Fig. 1l(a). As in the previous case some differences from its single-

space counterpart Fig. 9(a.2), are noted. The incoming flow from the

left edge has a faster portion near the top edge which is a result of the

tetra-space present on the left of this interface. This jet tends to destroy
the weak central recirculation zone seen earlier. The recirculation zone

near the bottom interface is still present, and the double vortical

structure under sphere 4 is seen. The plane along z = 1.04 also shows

this double vortex clearly in Fig. ll(b.1). However, the vortex is

somewhat weakened due to the change in the inlet velocity profiles at

the interface boundaries on either side of sphere 4. The section along

z = 0.36 in Fig. 11 (b.2), however shows a nearly smooth flow along the

spheres 1 and 2 while the single space counterpart Figs. 9(b.2) and (c.2)

show a vortex near the sphere surfaces. As in the case of hypercluster-

1, this is due to the inclination of the incoming flow. The double vortex

under sphere 4 is also seen in the y = 0.58 plane shown in Fig. 1 l(c).

This figure also shows the changes that are present in the inlet flows

on either side of sphere 4, where the flow exits tetra-spaces attached

to the central hexa-space, compare with Fig. 9(d.2).

SUMMARY

Two basic interstitial flow geometries, tetra- and hexa-spaces, have

been identified as essential elements for generating hexagonal or cubic

densely packed ideal beds. The interstitial spaces were divided into

suitable subdomains for structured grid generation and subsequent

solutions. The flow solver SCISEAL, a pressure based multidomain

Navier-Stokes solver was used to obtain representative flow solutions

on the tetra- and hexa-spaces as well as first-level hyperclusters

generated using the basic spaces.

The flow is fully 3-D and complex with multiple vortical structures

that generate local stagnation, separations, and most importantly flow

threads or fast flowing regions in the direction of the bulk flow field.

Preliminary solutions on first level hyperclusters indicate that the

results differ from the basic structures; still the major vortical struc-
tures and flow threads remained.

The vortical structures and local stagnation zones are inferred to

have a significant influence on transport phenomena.

The results, although not compared herein, are in good qualitative

agreement with experimental observation.
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cutting plane used to define the outer boundaries of the two clusters. View along the normal to the cutting plane.
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Figure 4(b)--Surface grids for tetrahedral-2 subdomain with axis convention. (1) Grid on the open base area.
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Figure4(c)--Surfacegridsforpyramidalsubdomain with axisconvention.(1)Gridon the sphere surface.
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convention and sphere arrangement for the hexa-space.
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Figure 6(a).--Solids model, flow geometry and boundary conditions for the single tetra-space.
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Figure 6(b).mSolids Model, flow geometry and boundary conditions for the single hexa-space.
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Figure 8(a).--Velocity vectors in the single tetra-space along the x = 1.1 cutting
plane. (1) Reynolds number = 400. (2) Reynolds number = 1200.
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Figure 8(b).--Velocity vectors in the single tetra-space along
the z = 0.180 cutting plane. (1) Reynolds number -- 400.
(2) Reynolds number = 1200.
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Figure 8(c).mVelocity vectors in the single tetra-space along the y = 0.630
cutting plane. (1) Reynolds number = 400. (2) Reynolds number = 1200.
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Figure 9(a).--Velocity vectors in the single hexa-space along the x = 1.00 cutting plane. (1) Reynolds
number = 400. (2) Reynolds number = 1200.
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Figure 9(b).--Velocity vectors in the single hexa-space along the z = 1.04 cutting plane. (1) Reynolds
number = 400. (2) Reynolds number = 1200.
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Figure 9(c).--Velocity vectors in the single hexa-space along the z = 0.36 cutting plane. (1) Reynolds
number = 400. (2) Reynolds number = 1200.
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Figure 9(d).--Velocity vectors in the single hexa-space along the y = 0.580 cutting plane. (1) Reynolds
number = 400. (2) Reynolds number = 1200.
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Figure 10.--Hypercluster-1 velocity vectors plots (Reynolds number of 1200). (a) Along x = 1.01 plane
(compare fig. 8(a.2)). (b) Along z = 0.180 plane (compare fig. 8(b.2)).
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Figure 10(c).--Hypercluster-1 velocity vectors plots (Reynolds number of 1200). (c) Along y = 0.630
cutting plane. Vectors shown only for the central tetra-space (compare fig. 8(c.2)).
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Figure 1l(a).--Velocity vector plots for hypercluster-1 (Reynolds number of 1200). Vectors shown only for
the central hexa-space. Along x = 1.00 cutting plane (compare fig. 9(a.2))
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Figure 11(b).mVelocity vector plots for hypercluster-l. Vectors shown only for the central hexa-space.
Along z = constant cutting planes. (1) z = 1.04 (compare fig. 9(b.2)); (2) z = 0.36 (compare fig. 9(c.2)).
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